If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=62
We move all terms to the left:
7x^2-(62)=0
a = 7; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·7·(-62)
Δ = 1736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1736}=\sqrt{4*434}=\sqrt{4}*\sqrt{434}=2\sqrt{434}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{434}}{2*7}=\frac{0-2\sqrt{434}}{14} =-\frac{2\sqrt{434}}{14} =-\frac{\sqrt{434}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{434}}{2*7}=\frac{0+2\sqrt{434}}{14} =\frac{2\sqrt{434}}{14} =\frac{\sqrt{434}}{7} $
| y2–10y+9=0 | | 95=k-22 | | -11x^2+6x=16-12x+12x | | (3-x)6=48- | | 157=81-v | | 21s=861 | | 4s-11=5s-18 | | 3a-68=a | | 830=b-115 | | 2(4x+3)x=3 | | 1,000000000000000000000000000000000,000000000000000000,00000000000x=980000000000000000000000000,000000000000000000000000000000,0000000000000000000000,00000000000000000000000000,0000000000000000000000,0000000000000000000000000000000000000000000000000000000 | | 0.10x+0.35(70)=28.5 | | t+114=973 | | x*11x=25 | | x-(-1.5(2)=-2 | | 4x^2+25=41 | | x-(-1.5(1)=-2 | | v-30=2v-77 | | s-111=165 | | $$3x+30+x=10+2x+5x+2 | | 3h+15-h=33 | | x+37+10x=180 | | 3-10n^2=-957 | | 511=w-147 | | X+2y=1500 | | (4u+96)+(5u+12)=180 | | 4.75y+0.25y+55=75 | | x=120-1/6 | | 135+x-5+x+35+x+30+3x-30=360 | | 2u-65=u | | 8=-0.66666h | | 70=4+.8x |